Understanding CSS Casecade

Garen lkezian

What is CSS?

It’s an imperative language that allows rules for the browser to design a web page. It stands for Cascading Style Sheets.
With CSS, browsers will handle the actual styling of the webpage. The styler only makes styling requests to the browser.

The reasoning behind CSS being and imperative and not a procedural language is so that webpages can render consistently
and efficiently. It also simplifies the design process and makes it abstract across all different clients. Instead of telling a
particular browser how to behave (procedurally), we instead make styling requests and the browsers does the styling for us.

What is a cascade?
The cascade defines the rules for which rule should go first. It helps us to keep track which "style" will run.

Use declaration
that comes later in
source order

Do selectors
have different
specificity?

Different
origin or
importance?

Is one an
inline style?
(Scope)

Conflicting
declarations

Use declaration
with higher
specificity

Use declaration
with higher-
priority origin

Use inline
declaration

Figure 1.3 High-level flowchart of the cascade showing declaration precedence

Figure 1: CSS Casecade

Cascading are determined by three factors:

1. Stylesheet Origin:

Where does the style come from? Is it inline, internal, or external css? (90% of our concerns are in the author style origin)
Author styles origin override the browser’s default agent styles origin. The agent styles origin is the reason why <1i> elements
have underlined and blue by default

1. Author Important Origin: !important is never overriden. It is a bad practice if overused.

2. Author Style Origin: Whichever is the closest is called (starting from the closest).

1. Inline Inside any HTML tag inside the <body> tag in an .html file
2. Internal Inside the <style> in the <head> tag in an .html file
3. External Inside any .css file

3. User Agent Origin: The "default style settings" of the browser so to speak

2. Selector Specificity:
What about specificity?

It helps us to categorize selectors by order of importance. They are (in order) inline styles, ID selectors, class selectors, and
type/tag/element selectors.

Different types of selectors have different types of specifities.
limportant has the highest specificity of them all. (We’re not going to include it here since it is rarely used)

It is necessary to understand certain terminology through code before proceeding (pseudoClass and pseudoELements will be
discussed later):

Example 1: CSS Important Terminology

.post :hover: :before { color: red; }
.selector:pseudoClass: :pseudoElement { property: value; }

/*

They all have the same spectifity wvalue

.post 1s a class selector

:hover is a pseudoClass

::before 1s a pseudoElement
.post:hover::before are a group of selectors

*/

/%

color: red; s a declaration
color is a property

red 1S a value

*/
Together, they make up what is called a ruleset.
Ok, but how do we determine simplicity?

We determine simplicity with a notation made of zeroes as such:

[O’ O’ 07 0]

1. 1st zero is inline specifity
2. 2nd zero is ID specificity
3. 3rd zero is class specifity
4. 4th zero is element specificity

Let’s take these rulesets inside this html code as an example:
Example 2: What is the colour of h1?

<!DOCTYPE html>

<html>
<head>
<style>
/* [0,0,0,3] */
html body hi { color : red; }
/* [0,1,0,0] */
#h1 { color : green; }
</style>
</head>
<body>

<h1>Test</h1>
</body>
</html>

What color do you think <hl> ’s colour will be? It is red
But wait, doesn’t the ID selector have a larger simplicity than an element selector?

Yes. But the reason why it is not green is because <h1> needs an HTML attribute called id for the id selector to be recognized
as such.

Ezample 3: Fizing h1’s colour

<!DOCTYPE html>

<html>
<head>
<style>
/* [0,0,0,3] */
html body hl { color : red; }
/* [0,1,0,0] */
#h1 { color : green; }
</style>
</head>
<body>
/* We mow have the attribute id added*/
<h1l id="h1">Test</h1>
</body>
</html>

Now it is green.

Again, the id attribute is looking for an id selector in the css file. If there is one, it will be used to perform styling stuff (In
this case, changing the text colour to green).

Notice that the element hl and the id "h1" selectors share the same name. This is to demonstrate that as long as there is the
pound symbol (#), the selector will be regarded as an id.

The same thing applies for classes with the period at the beginning (.classname). In other words, there are html class attributes
that are behave the same way as html id attributes but they only look for class selectors.

Now let’s take a more complex example:
Ezample 4: Complex Specificity
<!DOCTYPE html>

<html>
<head>
<style>
/* [0,0,0,3] */
html body hl { color : red; }
/%[0,0,1,1]%/
body .colorClass{ color: green; }
/* [0,0,1,0] */
.colorClass{ color : blue; }
1i ul{ list-style-type: none; }
</style>
</head>
<body>

<hl id="h1" class="colorClass">
Geography Question
</h1>

<p class="body .colorClass">
What is the capital of Burkina Faso?
</p>

<1li> Pretoria </1i>
<1li> Kinshasa </1i>
<1i> Ouagadougou </1i>

</body>
</html>

Tip!: Hovering over rulesets with Visual Studio Code is a fantastic way to figure out specificity.

3. Source Order
It is related to selector specificty of which that if there are two selectors of equal specifity, the one at the bottom will win.
For example:
Ezample 5: Source Order
hl { color: red; %}

hl { color: blue; }
/*h1 will be blue because the same specifier is below

the one above.*/

The same thing applies to classes and id specifiers.

To Conclude...

CSS can get really ugly if used unwisely. The general idea is that it is best to start general then write more and more specific
rules. That way, the design of the webpage can be consistent and modifying the file can be less painful.

It will not change the fact that it will require overrides and too much of it will defeat the purpose of a consitent design.

There are now two methodologies, one has to either accept the casecade (more modular, less repetitive), resist (more modular,
less reptitive) it, or do a little bit of both.

More Reading/Exercises:

o All the well-known CSS methodologies (like OOCSS, SMACSS, BEM etc.) are explained in this article
— A look at Some CSS Methodologies by William Craig: https://www.webfx.com/blog/web-design/css-methodologie

s/
o Exploring SMACSS: Scalable and Modular Architecture for CSS by Slobodan Gajic: https://www.toptal.com/css/smacss-
scalable-modular-architecture-css

o These exercises by flukeout are an excellent start to get to know with CSS selectors (:nth-of-type, last-child,
:first-child etc.): https://flukeout.github.io/.

https://www.webfx.com/blog/web-design/css-methodologies/
https://www.webfx.com/blog/web-design/css-methodologies/
https://www.toptal.com/css/smacss-scalable-modular-architecture-css
https://www.toptal.com/css/smacss-scalable-modular-architecture-css
https://flukeout.github.io/

	What is CSS?
	What is a cascade?
	1. Stylesheet Origin:
	2. Selector Specificity:
	3. Source Order

	To Conclude…
	More Reading/Exercises:

